P373练习
设 $\displaystyle f(x,y,z)$ 在 $\displaystyle \mathbb{R}^3$ 上有连续的偏导数, 且关于 $\displaystyle x,y$ 各以 $\displaystyle 1$ 为周期, 即: $\displaystyle \forall\ (x,y,z)\in \mathbb{R}^3$, 恒有
$$\begin{aligned} f(x+1,y,z)=f(x,y+1,z)=f(x,y,z+1)=f(x,y,z). \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
求证: 对任意实数 $\displaystyle \alpha,\beta,\gamma$, 有
$$\begin{aligned} \iiint_\varOmega \left(\alpha \frac{\partial f}{\partial x}+\beta\frac{\partial f}{\partial y}+\gamma\frac{\partial f}{\partial z}\right)\mathrm{ d} x\mathrm{ d} y\mathrm{ d} z=0, \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
其中 $\displaystyle \varOmega=[0,1]\times [0,1]\times [0,1]$ 是单位立方体. (南开大学)
购书 / 答疑 / pdf1 / pdf2 /
$$\begin{aligned} \iiint_\varOmega \alpha \frac{\partial f}{\partial x}\mathrm{ d} x\mathrm{ d} y\mathrm{ d} z &=\alpha\iint_{[0,1]^2}\mathrm{ d} y\mathrm{ d} z\int_0^1\frac{\partial f}{\partial x}\mathrm{ d} x\\\\ &=\alpha \int_{[0,1]^2}\left[f(1,y,z)-f(0,y,z)\right]\mathrm{ d} y\mathrm{ d} z=0. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
同理,
$$\begin{aligned} \iiint_\varOmega \beta\frac{\partial f}{\partial y}\mathrm{ d} x\mathrm{ d} y\mathrm{ d} z=0 =\iiint_\varOmega \gamma\frac{\partial f}{\partial z}\mathrm{ d} x\mathrm{ d} y\mathrm{ d} z=0, \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
故有结论. 跟锦数学微信公众号. 在线资料 / 公众号 / 资料目录 / 视频 / 微信群