张祖锦2023年数学专业真题分类70天之第42天
944、 3、 计算题 (每题 10 分, 共 50 分). (1)、 设 $\displaystyle A=(a_{ij})$ 为 $\displaystyle n$ 阶实方阵, $\displaystyle n\geq 2$, 其中 $\displaystyle a_{ij}=\left\{\begin{array}{llllllllllll}\frac{i}{j},&i\neq j,\\\\ 0,&i=j,\end{array}\right.$ $\displaystyle 1\leq i,j\leq n$, 求 $\displaystyle |A|$. (安徽大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / $\displaystyle |A|=\left|\begin{array}{cccccccccc}0&\frac{1}{2}&\frac{1}{3}&\cdots&\frac{1}{n}\\\\ 2&0&\frac{2}{3}&\cdots&\frac{2}{n}\\\\ 3&\frac{3}{2}&0&\cdots&\frac{3}{n}\\\\ \vdots&\vdots&\vdots&&\vdots\\\\ n&\frac{n}{2}&\frac{n}{3}&\cdots&0\end{array}\right|$. 第 $\displaystyle 1$ 行 $\displaystyle \cdot(-i)$ 加到第 $\displaystyle i$ 行, $\displaystyle 2\leq i\leq n$, 得
$$\begin{aligned} |A|=\left|\begin{array}{cccccccccc}0&\frac{1}{2}&\frac{1}{3}&\cdots&\frac{1}{n}\\\\ 2&-1&&&\\\\ 3&&-1&&\\\\ \vdots&&&\ddots&\\\\ n&&&&-1\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
第 $\displaystyle i$ 列 $\displaystyle \cdot i$ 加到第 $\displaystyle 1$ 列, 得
$$\begin{aligned} |A|=\left|\begin{array}{cccccccccc}n-1&\frac{1}{2}&\frac{1}{3}&\cdots&\frac{1}{n}\\\\ 0&-1&&&\\\\ 0&&-1&&\\\\ \vdots&&&\ddots&\\\\ 0&&&&-1\end{array}\right|=(-1)^{n-1}(n-1). \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
945、 1、 (20 分) 设 $\displaystyle f(x)=x^n-x, n\geq 2$, 求下列 $\displaystyle n-1$ 阶行列式
$$\begin{aligned} \left|\begin{array}{cccccccccc}f_n(x)&f_{n-1}(x)&\cdots&f_2(x)\\\\ f_n(x+1)&f_{n-1}(x+1)&\cdots&f_2(x+1)\\\\ \vdots&\vdots&&\vdots\\\\ f_n(x+n-2)&f_{n-1}(x+n-2)&\cdots&f_2(x+n-2)\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(北京工业大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 /
$$\begin{aligned} \mbox{原式}=&\left|\begin{array}{cccccccccc}1&x&x&\cdots&x\\\\ 0&f_n(x)&f_{n-1}(x)&\cdots&f_2(x)\\\\ 0&f_n(x+1)&f_{n-1}(x+1)&\cdots&f_2(x+1)\\\\ \vdots&\vdots&\vdots&&\vdots\\\\ 0&f_n(x+n-2)&f_{n-1}(x+n-2)&\cdots&f_2(x+n-2)\end{array}\right|\\\\ =&\left|\begin{array}{cccccccccc}1&x&x&\cdots&x\\\\ 1&x^n&x^{n-1}&\cdots&x^2\\\\ 1&(x+1)^n&(x+1)^{n-1}&\cdots&(x+1)^2\\\\ \vdots&\vdots&\vdots&&\vdots\\\\ 1&(x+n-2)^n&(x+n-2)^{n-1}&\cdots&(x+n-2)^2\end{array}\right|\ \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
第 $\displaystyle n$ 列与前面 $\displaystyle n-2$ 列交换后, 第 $\displaystyle n$ 列与前面 $\displaystyle n-3$ 列交换, 等等,
$$\begin{aligned} \mbox{原式}=&(-1)^{\sum_{i=1}^{n-2}i} \left|\begin{array}{cccccccccc}1&1&1&\cdots&1\\\\ x&x^2&x^3&\cdots&x^n\\\\ x+1&(x+1)^2&(x+1)^3&\cdots&(x+1)^n\\\\ \vdots&\vdots&\vdots&&\vdots\\\\ x+n-2&(x+n-2)^2&(x+n-2)^3&\cdots&(x+n-2)^n\end{array}\right|\\\\ =&(-1)^\frac{(n-1)(n-2)}{2} x(x+1)\cdots(x+n-2)\\\\ &\left|\begin{array}{cccccccccc}1&1&1&\cdots&1\\\\ 1&x&x^2&\cdots&x^{n-1}\\\\ 1&(x+1)&(x+1)^2&\cdots&(x+1)^{n-1}\\\\ \vdots&\vdots&\vdots&&\vdots\\\\ 1&(x+n-2)&(x+n-2)^2&\cdots&(x+n-2)^{n-1}\end{array}\right|\\\\ =&(-1)^\frac{(n-1)(n-2)}{2}\prod_{k=0}^{n-2}(x+k) \left\{\prod_{k=0}^{n-2}(x+k-1)\cdot \prod_{0\leq i < j\leq n-2}[(x+j)-(x-i)]\right\}\\\\ =&(-1)^\frac{(n-1)(n-2)}{2}\prod_{k=0}^{n-2} [(x+k)(x+k-1)]\cdot \prod_{j=1}^{n-2}j!. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
946、 1、 (15 分) 计算行列式
$$\begin{aligned} \left|\begin{array}{cccccccccc}2&2&2&\cdots&2\\\\ x_1(x_1-2)&x_2(x_2-2)&x_3(x_3-2)&\cdots&x_n(x_n-2)\\\\ x_1^2(x_1-2)&x_2^2(x_2-2)&x_3^2(x_3-2)&\cdots&x_n^2(x_n-2)\\\\ \vdots&\vdots&\vdots&&\vdots\\\\ x_1^{n-1}(x_1-2)&x_2^{n-2}(x_2-2)&x_3^{n-1}(x_3-2)&\cdots&x_n^{n-1}(x_n-2)\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(北京科技大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / 提出第一行的公因子 $\displaystyle 2$, 并加边得
$$\begin{aligned} \mbox{原式}=-2\left|\begin{array}{cccccccccc}0&1&1&1&\cdots&1\\\\ 1&x_1&x_2&x_3&\cdots&x_n\\\\ 0&x_1(x_1-2)&x_2(x_2-2)&x_3(x_3-2)&\cdots&x_n(x_n-2)\\\\ 0&x_1^2(x_1-2)&x_2^2(x_2-2)&x_3^2(x_3-2)&\cdots&x_n^2(x_n-2)\\\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\\\ 0&x_1^{n-1}(x_1-2)&x_2^{n-2}(x_2-2)&x_3^{n-1}(x_3-2)&\cdots&x_n^{n-1}(x_n-2)\end{array}\right| \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
第 $\displaystyle i$ 行 $\displaystyle \cdot 2$ 加到第 $\displaystyle i+1$ 行, $\displaystyle i=2,\cdots,n-1$, 得
$$\begin{aligned} \mbox{原式}=-2\left|\begin{array}{cccccccccc}0&1&1&1&\cdots&1\\\\ 1&x_1&x_2&x_3&\cdots&x_n\\\\ 2&x_1^2&x_2^2&x_3^2&\cdots&x_n^2\\\\ 2^2&x_1^3&x_2^3&x_3^3&\cdots&x_n^3\\\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\\\ 2^{n-1}&x_1^n&x_2^n&x_3^n&\cdots&x_n^n\end{array}\right| =-\left|\begin{array}{cccccccccc}0&1&1&1&\cdots&1\\\\ 2&x_1&x_2&x_3&\cdots&x_n\\\\ 2^2&x_1^2&x_2^2&x_3^2&\cdots&x_n^2\\\\ 2^3&x_1^3&x_2^3&x_3^3&\cdots&x_n^3\\\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\\\ 2^n&x_1^n&x_2^n&x_3^n&\cdots&x_n^n\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
将第一列拆分得
$$\begin{aligned} \mbox{原式}=&-\left|\begin{array}{cccccccccc}1&1&1&1&\cdots&1\\\\ 2&x_1&x_2&x_3&\cdots&x_n\\\\ 2^2&x_1^2&x_2^2&x_3^2&\cdots&x_n^2\\\\ 2^3&x_1^3&x_2^3&x_3^3&\cdots&x_n^3\\\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\\\ 2^n&x_1^n&x_2^n&x_3^n&\cdots&x_n^n\end{array}\right| -\left|\begin{array}{cccccccccc}-1&1&1&1&\cdots&1\\\\ 0&x_1&x_2&x_3&\cdots&x_n\\\\ 0&x_1^2&x_2^2&x_3^2&\cdots&x_n^2\\\\ 0&x_1^3&x_2^3&x_3^3&\cdots&x_n^3\\\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\\\ 0&x_1^n&x_2^n&x_3^n&\cdots&x_n^n\end{array}\right|\\\\ =&-\prod_{i=1}^n (x_i-2)\cdot \prod_{1\leq i < j\leq n}(x_j-x_i) +\prod_{i=1}^n x_i \cdot \prod_{1\leq i < j\leq n}(x_j-x_i)\\\\ =&\left[\prod_{i=1}^n x_i-\prod_{i=1}^n (x_i-2)\right]\cdot \prod_{1\leq i < j\leq n}(x_j-x_i). \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
947、 1、 填空题. (1)、 计算行列式: $\displaystyle \left|\begin{array}{cccccccccc}a_1&b_2&b_3&b_4\\\\ a_2&-1&0&0\\\\ a_3&0&-1&0\\\\ a_4&0&0&-1\end{array}\right|=\underline{\ \ \ \ \ \ \ \ \ \ }$. (北京理工大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / 第 $\displaystyle i$ 列 $\displaystyle \cdot a_i$ 加到第 $\displaystyle 1$ 列, $\displaystyle i=2,3,4$, 得
$$\begin{aligned} \mbox{原式}=&\left|\begin{array}{cccccccccc}a_1+a_2b_2+a_3b_3+a_4b_4&b_2&b_3&b_4\\\\ 0&-1&0&0\\\\ 0&0&-1&0\\\\ 0&0&0&-1\end{array}\right|\\\\ =&-(a_1+a_2b_2+a_3b_3+a_4b_4). \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
948、 1、 求 $\displaystyle \left|\begin{array}{cccccccccc}1+a&2&\cdots&n\\\\ 1&2+a&\cdots&n\\\\ \vdots&\vdots&&\vdots\\\\ 1&2&\cdots&n+a\end{array}\right|$. (北京师范大学2023年高等代数与解析几何考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 /
$$\begin{aligned} \mbox{原式}=&\left|\begin{array}{cccccccccc}1+a&2&\cdots&n\\\\ -a&a&\cdots&0\\\\ \vdots&\vdots&&\vdots\\\\ -a&0&\cdots&a\end{array}\right|=a^{n-1}\left|\begin{array}{cccccccccc}1+a&2&\cdots&n\\\\ -1&1&\cdots&0\\\\ \vdots&\vdots&&\vdots\\\\ -1&0&\cdots&1\end{array}\right|\\\\ =&a^{n-1}\left|\begin{array}{cccccccccc}a+\frac{n(n+1)}{2}&2&\cdots&n\\\\ 0&1&\cdots&0\\\\ \vdots&\vdots&&\vdots\\\\ 0&0&\cdots&1\end{array}\right|=a^{n-1}\left[a+\frac{n(n+1)}{2}\right]. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
949、 1、 计算题. (1)、 计算行列式
$$\begin{aligned} \det(|i-j|)=\left|\begin{array}{cccccccccc}0&1&2&\cdots&n-2&n-1\\\\ 1&0&1&\cdots&n-3&n-2\\\\ 2&1&0&\cdots&n-4&n-3\\\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\\\ n-2&n-3&n-4&\cdots&0&1\\\\ n-1&n-2&n-3&\cdots&1&0\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(大连理工大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 /
$$\begin{aligned} \mbox{原式}& =\left|\begin{array}{cccccccccc} 0&1&2&\cdots&n-1\\\\ 1&-1&-1&\cdots&-1\\\\ \vdots&\vdots&\vdots&\ddots&\vdots\\\\ 1&1&1&\cdots&-1 \end{array}\right|\\\\ &\quad \left(\mbox{第 $\displaystyle i$ 行乘以 $\displaystyle -1$ 加到第 $\displaystyle i+1$ 行, $\displaystyle i=n-1,\cdots,1$}\right)\\\\ &=\left|\begin{array}{cccccccccc} n-1&n&n+1&\cdots&n-1\\\\ 0&-2&-2&\cdots&-1\\\\ 0&0&-2&\cdots&-1\\\\ \vdots&\vdots&\vdots&\ddots&\vdots\\\\ 0&0&0&\cdots&-1 \end{array}\right|\left(\begin{array}{c}\mbox{第 $\displaystyle n$ 列加到第 $\displaystyle i$ 列,}\\\\ i=1,2,\cdots,n-1\end{array}\right)\\\\ &=(n-1)(-2)^{n-2}(-1) =(-1)^{n-3}(n-1)2^{n-2}. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
950、 1、 填空题 (共 30 分, 每题 5 分). (1)、 行列式
$$\begin{aligned} D_5=\left|\begin{array}{cccccccccc}1&2&3&4&5\\\\ 2&1&2&3&4\\\\ 3&2&1&2&3\\\\ 4&3&2&1&2\\\\ 5&4&3&2&1\end{array}\right| \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
的值为 $\displaystyle \underline{\ \ \ \ \ \ \ \ \ \ }$. (电子科技大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / 第 $\displaystyle i$ 行 $\displaystyle \cdot(-1)$ 加到第 $\displaystyle i+1$ 行, $\displaystyle i=4,3,2,1$; 第 $\displaystyle i$ 列 $\displaystyle \cdot (-1)$ 加到第 $\displaystyle i+1$ 列, $\displaystyle i=4,3,2,1$; 第 $\displaystyle i$ 行 $\displaystyle \cdot \frac{1}{2}$ 加到第 $\displaystyle 1$ 列, $\displaystyle i=2,3,4,5$ 得
$$\begin{aligned} D_5=&\left|\begin{array}{cccccccccc}1&2&3&4&5\\\\ 1&-1&-1&-1&-1\\\\ 1&1&-1&-1&-1\\\\ 1&1&1&-1&-1\\\\ 1&1&1&1&-1\end{array}\right|=\left|\begin{array}{cccccccccc}1&1&1&1&1\\\\ 1&-2&&&\\\\ 1&&-2&&\\\\ 1&&&-2&\\\\ 1&&&&-2\end{array}\right|\\\\ =&\left(1+\frac{4}{2}\right)\cdot (-2)^4=48. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
951、 2、 设行列式
$$\begin{aligned} D=\left|\begin{array}{cccccccccc}a&b&c&d\\\\ -b&a&-d&c\\\\ -c&d&a&-b\\\\ -d&-c&b&a\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(1)、 求 $\displaystyle D$ 中第一行第一列元素的余子式; (2)、 求 $\displaystyle A_{11}+A_{12}+A_{13}+A_{14}$; (3)、 求行列式 $\displaystyle D$. (东北大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / (1)、 $\displaystyle D$ 中第一行第一列元素的余子式为
$$\begin{aligned} \left|\begin{array}{cccccccccc}a&-d&c\\\\ d&a&-b\\\\ -c&b&a\end{array}\right| =&a^2(a^2+b^2)+d(ad-bc)+c(bd+ac)\\\\ =&a(a^2+b^2+c^2+d^2). \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(2)、 $\displaystyle A_{11}+A_{12}+A_{13}+A_{14}$
$$\begin{aligned} =&\left|\begin{array}{cccccccccc}1&1&1&1\\\\ -b&a&-d&c\\\\ -c&d&a&-b\\\\ -d&-c&b&a\end{array}\right|\\\\ =&\left|\begin{array}{cccccccccc}a&-d&c\\\\ d&a&-b\\\\ -c&b&a\end{array}\right|+\left|\begin{array}{cccccccccc}b&-d&c\\\\ c&a&-b\\\\ d&b&a\end{array}\right|+\left|\begin{array}{cccccccccc}-b&a&c\\\\ -c&d&-b\\\\ -d&-c&a\end{array}\right|+\left|\begin{array}{cccccccccc}b&a&-d\\\\ c&d&a\\\\ d&-c&b\end{array}\right|\\\\ =&a(a^2+b^2+c^2+d^2)+b(a^2+b^2+c^2+d^2)\\\\ &+c(a^2+b^2+c^2+d^2)+d(a^2+b^2+c^2+d^2)\\\\ =&(a+b+c+d)(a^2+b^2+c^2+d^2). \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(3)、 为求行列式 $\displaystyle D$, 我们给出一个常用的行列式计算公式. 设 $\displaystyle A,B,C,D$ 为同级方阵且 $\displaystyle AC=CA$, 则
$$\begin{aligned} \left|\begin{array}{cccccccccc}A&B\\\\ C&D\end{array}\right|=|AD-CB|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
事实上, (3-1)、 若 $\displaystyle A$ 可逆, 则由
$$\begin{aligned} \left(\begin{array}{cccccccccccccccccccc} E&0\\\\ -CA^{-1}&E\end{array}\right)\left(\begin{array}{cccccccccccccccccccc} A&B\\\\ C&D\end{array}\right)\left(\begin{array}{cccccccccccccccccccc} E&-A^{-1}B\\\\ 0&E\end{array}\right)=\left(\begin{array}{cccccccccccccccccccc} A&0\\\\ 0&D-CA^{-1}B\end{array}\right) \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
知
$$\begin{aligned} \left|\begin{array}{cccccccccc} A&B\\\\ C&D\end{array}\right|&=|A|\cdot |D-CA^{-1}B|\\\\ &=|A|\cdot |D-A^{-1}CB|\left(AC=CA\Rightarrow CA^{-1}=A^{-1}C\right)\\\\ &=|A(D-A^{-1}CB|\left(|AB|=|A|\cdot |B|\right)\\\\ &=|AD-CB|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(3-2)、 若 $\displaystyle A$ 奇异, 则关于 $\displaystyle \lambda$ 的多项式 $\displaystyle |\lambda E+A|=0$ 至多有 $\displaystyle n$ 个复根 $\displaystyle \lambda_1,\cdots,\lambda_n$. 而
$$\begin{aligned} &\forall\ \lambda\not\in \left\{\lambda_1,\cdots,\lambda_n\right\}, |\lambda E+A|\neq 0\\\\ \Rightarrow&\tilde{A}=\lambda E+A\mbox{可逆, 满足}\tilde{A} C=C\tilde{A}\\\\ \Rightarrow&\left|\begin{array}{cccccccccc} \tilde{A}&B\\\\ C&D\end{array}\right|=|\tilde{A} D-CB|\left(\mbox{由 (1)}\right)\\\\ \Rightarrow& \left|\begin{array}{cccccccccc} \lambda E+A&B\\\\ C&D\end{array}\right|=|(\lambda E+A)D-CB|. \qquad(210226: eq)\tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
设 $\displaystyle f(\lambda)\equiv \left|\begin{array}{cccccccccc} \lambda E+A&B\\\\ C&D\end{array}\right|-|(\lambda E+A)D-CB|$. 若 $\displaystyle f(\lambda)\not\equiv 0$, 则 $\displaystyle f(\lambda)$ 是次数 $\displaystyle \leq n$ 的多项式, 至多有 $\displaystyle n$ 个复根. 这与 (210226: eq) 矛盾. 故
$$\begin{aligned} &f(\lambda)\equiv 0, \forall\ \lambda\in\mathbb{C}\\\\ \Rightarrow&f(0)=0\Rightarrow \left|\begin{array}{cccccccccc}A&B\\\\ C&D\end{array}\right|=|AD-CB|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(4)、 由第 3 步知
$$\begin{aligned} D=&\left|\left(\begin{array}{cccccccccccccccccccc}a&b\\\\-b&a\end{array}\right)\left(\begin{array}{cccccccccccccccccccc}a&-b\\\\ b&a\end{array}\right)-\left(\begin{array}{cccccccccccccccccccc}c&d\\\\ -d&c\end{array}\right)\left(\begin{array}{cccccccccccccccccccc}-c&d\\\\ -d&-c\end{array}\right)\right|\\\\ =&\left|\begin{array}{cccccccccc}a^2+b^2+c^2+d^2&\\\\ &a^2+b^2+c^2+d^2\end{array}\right|=(a^2+b^2+c^2+d^2)^2. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
952、 1、 (15 分) 求下列行列式的值: $\displaystyle D=\left|\begin{array}{cccccccccc}1&1&1&\cdots&1&1\\\\ x_1&x_2&x_3&\cdots&x_{n-1}&x_n\\\\ x_1^2&x_2^2&x_3^2&\cdots&x_{n-1}^2&x_n^2\\\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\\\ x_1^{n-2}&x_2^{n-2}&x_3^{n-2}&\cdots&x_{n-1}^{n-2}&x_n^{n-2}\\\\ x_1^{n-1}&x_2^{n-1}&x_3^{n-1}&\cdots&x_{n-1}^{n-1}&x_n^{n-1}\end{array}\right|$. (东北师范大学2023年高等代数与解析几何考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / 比较
$$\begin{aligned} \left|\begin{array}{ccccc} 1&1&\cdots&1&1\\\\ x_1&x_2&\cdots&x_n&x\\\\ x_1^2&x_2^2&\cdots&x_n^2&x\\\\ \cdots&\cdots&\cdots&\cdots&\cdots\\\\ x_1^{n-2}&x_2^{n-2}&\cdots&x_n^{n-2}&x^{n-2}\\\\ x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}&x^{n-1}\\\\ x_1^n&x_2^n&\cdots&x_n^n&x^n \end{array}\right|=\prod_{1\leq i < j\leq n} (x_j-x_i)\cdot \prod_{i=1}^n (x-x_i) \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
两端 $\displaystyle x^{n-1}$ 的系数有
$$\begin{aligned} -D_n=\prod_{1\leq i < j\leq n} (x_j-x_i)\cdot \left(-\sum_{i=1}^n x_i\right), \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
$$\begin{aligned} D_n=\prod_{1\leq i < j\leq n} (x_j-x_i)\cdot \sum_{i=1}^n x_i. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
953、 (2)、 若 $\displaystyle f(x)=\left|\begin{array}{cccccccccc}5x&x&1&x\\\\ 1&x&1&-1\\\\ 3&2&x&1\\\\ 3&1&1&x\end{array}\right|$, 则 $\displaystyle x^4$ 的系数为 $\displaystyle \underline{\ \ \ \ \ \ \ \ \ \ }$, $\displaystyle x^3$ 的系数为 $\displaystyle \underline{\ \ \ \ \ \ \ \ \ \ }$. (广西大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / $\displaystyle 5,-4$. 直接计算即可.跟锦数学微信公众号. 在线资料/公众号/
954、 2、 计算 $\displaystyle n$ 阶行列式
$$\begin{aligned} D=\left|\begin{array}{cccccccccc}1&2&3&\cdots&n-1&n\\\\ 2&3&4&\cdots&n&1\\\\ 3&4&5&\cdots&1&2\\\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\\\ n&1&2&\cdots&n-2&n-1\end{array}\right| \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
的值. (广西大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / 第 $\displaystyle i$ 行 $\displaystyle \cdot(-1)$ 加到第 $\displaystyle i+1$ 行, $\displaystyle i=n-1,\cdots, 1$ 得
$$\begin{aligned} D=\left|\begin{array}{cccccccccc}1&2&3&\cdots&n-1&n\\\\ 1&1&1&\cdots&1&1-n\\\\ 1&1&1&\cdots&1-n&1\\\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\\\ 1-n&1&1&\cdots&1&1\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
第 $\displaystyle i$ 列加到第 $\displaystyle 1$ 列, $\displaystyle 2\leq i\leq n$, 得
$$\begin{aligned} D=&\left|\begin{array}{cccccccccc}\frac{n(n+1)}{2}&2&3&\cdots&n-1&n\\\\ 0&1&1&\cdots&1&1-n\\\\ 0&1&1&\cdots&1-n&1\\\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\\\ 0&1&1&\cdots&1&1\end{array}\right|\\\\ =&\frac{n(n+1)}{2}\left|\begin{array}{cccccccccc}2&3&\cdots&n-1&n\\\\ 1&1&\cdots&1&1-n\\\\ 1&1&\cdots&1-n&1\\\\ \vdots&\vdots&&\vdots&\vdots\\\\ 1&1&\cdots&1&1\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
第 $\displaystyle n$ 行 $\displaystyle \cdot(-1)$ 加到第 $\displaystyle i$ 行, $\displaystyle 1\leq i\leq n-1$, 得
$$\begin{aligned} D=&\frac{n(n+1)}{2}\left|\begin{array}{cccccccccc}0&0&\cdots&0&-n\\\\ 0&0&\cdots&-n&0\\\\ \vdots&\vdots&&\vdots&\vdots\\\\ 0&-n&\cdots&0&0\\\\ 1&1&\cdots&1&1\end{array}\right|\\\\ =&\frac{n(n+1)}{2} (-1)^{n-2}(-1)^{\tau(n,n-1,\cdots,1)} =(-1)^\frac{n(n-1)}{2} \frac{n^{n-1}(n+1)}{2}. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
955、 (2)、 行列式 $\displaystyle \left|\begin{array}{cccccccccc}2&0&0&0&-6\\\\ 0&3&0&0&9\\\\ 0&0&1&0&2\\\\ 0&0&0&5&-10\\\\ 5&5&6&6&1\end{array}\right|$ 的值为 $\displaystyle \underline{\ \ \ \ \ \ \ \ \ \ }$. (哈尔滨工程大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / 第 $\displaystyle 1$ 列乘以 $\displaystyle 3$ 加到第 $\displaystyle 5$ 列, 第 $\displaystyle 2$ 列乘以 $\displaystyle -3$ 加到第 $\displaystyle 5$ 列, 第 $\displaystyle 3$ 列乘以 $\displaystyle -2$ 加到第 $\displaystyle 5$ 列, 第 $\displaystyle 4$ 列乘以 $\displaystyle 2$ 加到第 $\displaystyle 5$ 列后就化为了下三角矩阵的行列式, 最终结果为
$$\begin{aligned} 2\cdot 3\cdot 1\cdot 5\cdot (1+3\cdot 5-3\cdot 5-2\cdot 6+2\cdot 6)=30. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
956、 4、 若
$$\begin{aligned} A=\left(\begin{array}{cccccccccccccccccccc} a_{11}&a_{12}&\cdots&a_{1n}\\\\ a_{21}&a_{22}&\cdots&a_{2n}\\\\ \vdots&\vdots&&\vdots\\\\ a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right), F=\left(\begin{array}{cccccccccccccccccccc}1&1&\cdot&1\\\\ 1&1&\cdots&1\\\\ \vdots&\vdots&&\vdots\\\\ 1&1&\cdots&1\end{array}\right). \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(1)、 证明: $\displaystyle |A+xF|=|A|+x\sum_{j=1}^n \sum_{i=1}^n A_{ij}$. (2)、 证明:
$$\begin{aligned} \sum_{j=1}^n \sum_{i=1}^n A_{ij} =\left|\begin{array}{cccccccccc}1&a_{12}-a_{11}&\cdots&a_{1n}-a_{1,n-1}\\\\ 1&a_{22}-a_{21}&\cdots&a_{2n}-a_{2,n-1}\\\\ \vdots&\vdots&&\vdots\\\\ 1&a_{n2}-a_{n1}&\cdots&a_{nn}-a_{n,n-1}\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(哈尔滨工业大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / (1)、 我们有如下常用公式: 由
$$\begin{aligned} \left(\begin{array}{cccccccccccccccccccc}E&0\\\\ B&E\end{array}\right)\left(\begin{array}{cccccccccccccccccccc}E&A\\\\ -B&E\end{array}\right)\left(\begin{array}{cccccccccccccccccccc}E&-A\\\\ 0&E\end{array}\right)=&\left(\begin{array}{cccccccccccccccccccc}E&0\\\\ 0&E+BA\end{array}\right),\\\\ \left(\begin{array}{cccccccccccccccccccc}E&-A\\\\ 0&E\end{array}\right)\left(\begin{array}{cccccccccccccccccccc}E&A\\\\ -B&E\end{array}\right)\left(\begin{array}{cccccccccccccccccccc}E&0\\\\ B&E\end{array}\right)=&\left(\begin{array}{cccccccccccccccccccc}E+AB&0\\\\ 0&E\end{array}\right)\qquad(I) \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
即知
$$\begin{aligned} |E+BA|=|E+AB|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(2)、 设 $\displaystyle e=(1,\cdots,1)^\mathrm{T}$, 则当 $\displaystyle A$ 可逆时,
$$\begin{aligned} &|A+xee^\mathrm{T}|=|A|\cdot |E+xA^{-1}e\cdot \mathrm{e}^\mathrm{T}|\\\\ \overset{\tiny\mbox{第1步}}{=}& |A|\left(1+xe^\mathrm{T} \cdot A^{-1}e\right) =|A|+xe^\mathrm{T} A^\star e. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
上式两端都是 $\displaystyle a_{ij}$ 的连续函数, 而对一般的 $\displaystyle A$, 还有
$$\begin{aligned} |A+xee^\mathrm{T}|=|A|+xe^\mathrm{T} A^\star e=|A|+\sum_{j=1}^n \sum_{i=1}^n A_{ij}. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(3)、 取 $\displaystyle x=1$, 由第 1 问结果知
$$\begin{aligned} \sum_{j=1}^n \sum_{i=1}^n A_{ij}=|A+F|-|A|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
利用行列式公式 $\displaystyle |\alpha+\beta,\cdots|=|\alpha,\cdots|+|\beta,\cdots|$ 知
$$\begin{aligned} \mbox{左端}=&\left|\begin{array}{cccccccccc}1&a_{12}&\cdots&a_{1n}\\\\ 1&a_{22}&\cdots&a_{2n}\\\\ \vdots&\vdots&&\vdots\\\\ 1&a_{n2}&\cdots&a_{nn}\end{array}\right|+\cdots+\left|\begin{array}{cccccccccc}a_{11}&\cdots&a_{1,n-1}&1\\\\ a_{21}&\cdots&a_{2,n-1}&1\\\\ \vdots&\vdots&&\vdots\\\\ a_{n1}&\cdots&a_{n,n-1}&1\end{array}\right|\\\\ \equiv&A_1+\cdots+A_n.\qquad(I) \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
此外,
$$\begin{aligned} \mbox{右端}=&\left|\begin{array}{cccccccccc}1&0&0&\cdots&0\\\\ a_{11}&1&a_{12}-a_{11}&\cdots&a_{1n}-a_{1,n-1}\\\\ a_{21}&1&a_{22}-a_{21}&\cdots&a_{2n}-a_{2,n-1}\\\\ \vdots&\vdots&\vdots&&\vdots\\\\ a_{n1}&1&a_{n2}-a_{n1}&\cdots&a_{nn}-a_{n,n-1}\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
第 $\displaystyle 1$ 列加到第 $\displaystyle 3$ 列, 第 $\displaystyle i$ 列加到第 $\displaystyle i+1$ 列, $\displaystyle i=3,\cdots,n-1$, 得
$$\begin{aligned} \mbox{右端}=\left|\begin{array}{cccccccccc}1&0&1&\cdots&1\\\\ a_{11}&1&a_{12}&\cdots&a_{1n}\\\\ a_{21}&1&a_{22}&\cdots&a_{2n}\\\\ \vdots&\vdots&\vdots&&\vdots\\\\ a_{n1}&1&a_{n2}&\cdots&a_{nn}\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
按第 $\displaystyle 1$ 行展开知 [回忆 $\displaystyle (I)$ 的记号]
$$\begin{aligned} \mbox{右端}=&A_1+\sum_{i=2}^n(-1)^{1+(i+1)} \left|\begin{array}{cccccccccc}a_{11}&1&a_{12}&\cdots&a_{1,i-1}&a_{1,i+1}&\cdots&a_{1n}\\\\ a_{21}&1&a_{22}&\cdots&a_{1,i-1}&a_{2,i+1}&\cdots&a_{2n}\\\\ \vdots&\vdots&\vdots&&\vdots&\vdots&&\vdots\\\\ a_{n1}&1&a_{n2}&\cdots&a_{n,i-1}&a_{n,i+1}&\cdots&a_{nn}\end{array}\right|\\\\ =&A_1+\sum_{i=2}^n A_i\stackrel{(I)}{=}\mbox{左端}. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
957、 2、 设 $\displaystyle D_n=\left|\begin{array}{cccccccccc}1&1&1&\cdots&1\\\\ a_1&a_2&a_3&\cdots&a_n\\\\ a_1^2&a_2^2&a_3^2&\cdots&a_n^2\\\\ \vdots&\vdots&\vdots&&\vdots\\\\ a_1^{n-1}&a_2^{n-1}&a_3^{n-1}&\cdots&a_n^{n-1}\end{array}\right|$. 求 $\displaystyle \sum_{i=1}^n \sum_{j=1}^n A_{ij}$, 其中 $\displaystyle A_{ij}$ 是 $\displaystyle D_n$ 中 $\displaystyle (i,j)$ 元的代数余子式. (河北工业大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 /
$$\begin{aligned} \mbox{原式}=&\sum_{j=1}^n A_{1j}+\sum_{j=1}^n A_{2j}+\cdots+\sum_{j=1}^n A_{nj}\\\\ =&\sum_{j=1}^n A_{1j}+0+\cdots+0\left(\mbox{后面的 $\displaystyle n-1$ 个行列式第 $\displaystyle 1, i$ 行的元素全为 $\displaystyle 1$}\right)\\\\ =&D_n=\prod_{1\leq i < j\leq n}(a_j-a_i). \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
958、 1、 计算 $\displaystyle n$ 阶行列式
$$\begin{aligned} D_n=\left|\begin{array}{cccccccccc}1&1&\cdots&1\\\\ 1&2&\cdots&n\\\\ \vdots&\vdots&&\vdots\\\\ 1&2^{n-2}&\cdots&n^{n-2}\\\\ 1&2^n&\cdots&n^n\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(湖南大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / (1)、 我们给出一般结果:
$$\begin{aligned} D_n=\left|\begin{array}{cccc} 1&1&\cdots&1\\\\ x_1&x_2&\cdots&x_n\\\\ x_1^2&x_2^2&\cdots&x_n^2\\\\ \cdots&\cdots&\cdots&\cdots\\\\ x_1^{n-2}&x_2^{n-2}&\cdots&x_n^{n-2}\\\\ x_1^n&x_2^n&\cdots&x_n^n \end{array}\right| =\prod_{1\leq i < j\leq n} (x_j-x_i)\cdot \sum_{i=1}^n x_i. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
比较
$$\begin{aligned} \left|\begin{array}{ccccc} 1&1&\cdots&1&1\\\\ x_1&x_2&\cdots&x_n&x\\\\ x_1^2&x_2^2&\cdots&x_n^2&x\\\\ \cdots&\cdots&\cdots&\cdots&\cdots\\\\ x_1^{n-2}&x_2^{n-2}&\cdots&x_n^{n-2}&x^{n-2}\\\\ x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}&x^{n-1}\\\\ x_1^n&x_2^n&\cdots&x_n^n&x^n \end{array}\right|=\prod_{1\leq i < j\leq n} (x_j-x_i)\cdot \prod_{i=1}^n (x-x_i) \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
两端 $\displaystyle x^{n-1}$ 的系数有
$$\begin{aligned} -D_n=\prod_{1\leq i < j\leq n} (x_j-x_i)\cdot \left(-\sum_{i=1}^n x_i\right), \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
$$\begin{aligned} D_n=\prod_{1\leq i < j\leq n} (x_j-x_i)\cdot \sum_{i=1}^n x_i. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(2)、 回到题目. 由第 1 步知
$$\begin{aligned} &D_n=\prod_{1\leq i < j\leq n}(j-i)\cdot \sum_{i=1}^n i\\\\ =&\prod_{j=2}^n (j-1)! \cdot \frac{n(n+1)}{2} =\frac{n(n+1)}{2}\prod_{i=1}^{n-1}i!. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
959、 (4)、 行列式 $\displaystyle \left|\begin{array}{cccccccccc}6&1&8\\\\ 7&5&3\\\\ 2&9&4\end{array}\right|$ 的值为 $\displaystyle \underline{\ \ \ \ \ \ \ \ \ \ }$. (华东师范大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / 直接按第一行展开知原式 $\displaystyle =360$.跟锦数学微信公众号. 在线资料/公众号/
960、 2、 若 $\displaystyle n$ 是奇数, 证明行列式
$$\begin{aligned} D=\left|\begin{array}{cccccccccc} 1&2&3&\cdots&n-1&n\\\\ 2^2&3^2&4^2&\cdots&n^2&(n+1)^2\\\\ 3^3&4^3&5^3&\cdots&(n+1)^3&(n+1)^3\\\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\\\ (n-1)^{n-1}&n^{n-1}&(n+1)^{n-1}&\cdots&(n+1)^{n-1}&(n+1)^{n-1}\\\\ n^n&(n+1)^n&(n+1)^n&\cdots&(n+1)^n&(n+1)^n \end{array}\right|\neq 0. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(华南理工大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / 由 $\displaystyle n$ 是奇数知 $\displaystyle n+1$ 是偶数. 设题中矩阵为 $\displaystyle A=(a_{ij})$, 则
$$\begin{aligned} a_{i,n+1-i}=2b_{i,n+1-i}+1, a_{i,n+2-i}=2b_{i,n+2-i}, \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
而
$$\begin{aligned} D=&\sum_{j_1,\cdots,j_n}(-1)^{\tau(j_1,\cdots,j_n)}a_{1j_1}\cdots a_{nj_n}\\\\ =&\sum_{j_1,\cdots,j_n}(-1)^{\tau(j_1,\cdots,j_n)}a_{1j_1}\cdots a_{i,n-i} \cdot (2b_{i,n+1-i}+1) \cdot 2b_{i,n+2-i}\cdots 2b_{i,n+2-i}\\\\ \equiv&\sum_{j_1,\cdots,j_n}(-1)^{\tau(j_1,\cdots,j_n)}a_{1j_1}\cdots a_{i,n-i} \cdot 1\cdot 0\cdots 0\left(\mod 2\right)\\\\ \equiv& \left|\begin{array}{cccccccccc} 1&2&3&\cdots&n-1&1\\\\ 2^2&3^2&4^2&\cdots&1&0\\\\ 3^3&4^3&5^3&\cdots&0&0\\\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\\\ (n-1)^{n-1}&1&0&\cdots&0&0\\\\ 1&0&0&\cdots&0&0 \end{array}\right|\left(\mod 2\right)\\\\ \equiv& (-1)^{\tau(n,n-1,\cdots,2,1)}=(-1)^\frac{n(n-1)}{2}\left(\mod 2\right). \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
故 $\displaystyle D\neq 0$.跟锦数学微信公众号. 在线资料/公众号/
961、 2、 计算行列式 $\displaystyle D=\left|\begin{array}{cccccccccc}x_1y_1&x_1y_2&x_1y_3&x_1y_4\\\\ x_2y_1&x_2y_2&x_2y_3&x_2y_4\\\\ x_3y_1&x_3y_2&x_3y_3&x_3y_4\\\\ x_4y_1&x_4y_2&x_4y_3&x_4y_4\end{array}\right|$. (华南师范大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / $\displaystyle D$ 对应的矩阵 $\displaystyle A=\left(\begin{array}{cccccccccccccccccccc}x_1\\\\\vdots\\\\x_4\end{array}\right)(y_1,\cdots,y_4)$ 满足 $\displaystyle \mathrm{rank} A\leq 1$, 而 $\displaystyle |D|=\left\{\begin{array}{llllllllllll}x_1y_1,&n=1,\\\\ 0,&n\geq 2.\end{array}\right.$跟锦数学微信公众号. 在线资料/公众号/
962、 1、 (15 分) 计算行列式
$$\begin{aligned} \left|\begin{array}{cccccccccc}2^2-2&2^3-2&\cdots&2^{2023}-2\\\\ 3^2-3&3^3-3&\cdots&3^{2023}-3\\\\ \vdots&\vdots&&\vdots\\\\ 2023^2-2023&2023^3-2023&\cdots&2023^{2023}-2023\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(华中科技大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / 加边:
$$\begin{aligned} \mbox{原式}=\left|\begin{array}{cccccccccc}1&1&1&\cdots&1\\\\ 0&2^2-2&2^3-2&\cdots&2^{2023}-2\\\\ 0&3^2-3&3^3-3&\cdots&3^{2023}-3\\\\ \vdots&\vdots&\vdots&&\vdots\\\\ 0&2023^2-2023&2023^3-2023&\cdots&2023^{2023}-2023\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
第 $\displaystyle 1$ 行加到其它各行:
$$\begin{aligned} \mbox{原式}=\left|\begin{array}{cccccccccc}1&1^2&1^3&\cdots&1^{2023}\\\\ 2&2^2&2^3&\cdots&2^{2023}\\\\ 3&3^2&3^3&\cdots&3^{2023}\\\\ \vdots&\vdots&\vdots&&\vdots\\\\ 2023&2023^2&2023^3&\cdots&2023^{2023}\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
第 $\displaystyle i$ 行提出公因子 $\displaystyle i$, $\displaystyle 2\leq i\leq 2023$ 后化为范德蒙行列式
$$\begin{aligned} \mbox{原式}=2023!\prod_{1\leq i < j\leq 2023} =2023!\prod_{j=2}^{2023}(j-1)!=\prod_{k=2}^{2023}k!. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
963、 1、 填空题. (1)、 设三阶行列式 $\displaystyle D=\left|\begin{array}{cccccccccc}2&1&1\\\\ 1&2&1\\\\ 1&1&2\end{array}\right|$, $\displaystyle A_{ij}$ 表示 $\displaystyle D$ 的 $\displaystyle (ij)$ 位置的代数余子式, 则
$$\begin{aligned} A_{11}+2A_{12}+3A_{13}=\underline{\ \ \ \ \ \ \ \ \ \ }. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
(华中师范大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / $\displaystyle \mbox{原式}=\left|\begin{array}{cccccccccc}1&2&3\\\\ 1&2&1\\\\ 1&1&2\end{array}\right|=-2$.跟锦数学微信公众号. 在线资料/公众号/
964、 2、 计算与证明. (1)、 计算 $\displaystyle n$ 阶行列式 $\displaystyle \left|\begin{array}{cccccccccc}2&-4&&\\\\ 2&\ddots&\ddots&\\\\ &\ddots&\ddots&-4\\\\ &&2&2\end{array}\right|$. (华中师范大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / 设原式 $\displaystyle =D_n$, 则 $\displaystyle D_1=2, D_2=12$, $\displaystyle D_n=2D_{n-1}+8D_{n-2}$. 特征方程为 $\displaystyle \lambda^2-2\lambda-8=0$, 而可设
$$\begin{aligned} D_n=c_14^n+c_2(-2)^n\stackrel{D_1=2, D_2=12}{\Rightarrow}c_1=\frac{2}{3},c_2=\frac{1}{3}\Rightarrow D_n=\frac{2\cdot 4^n+(-2)^n}{3}. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
965、 1、 计算行列式 $\displaystyle D_n=\left|\begin{array}{cccccccccc}a_0&x&x&\cdots&x\\\\ x&a_1&0&\cdots&0\\\\ x&0&a_2&\cdots&0\\\\ \vdots&\vdots&\vdots&\ddots&\vdots\\\\ x&0&0&\cdots&a_{n-1}\end{array}\right|$, 其中 $\displaystyle a_1a_2\cdots a_{n-1}\neq 0$. (暨南大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 / 当 $\displaystyle n=1$ 时, $\displaystyle D_1=a_0$. 当 $\displaystyle n\geq 2$ 时, 第 $\displaystyle i$ 列 $\displaystyle \cdot\frac{-x}{a_{i-1}}$ 加到第 $\displaystyle 1$ 列, $\displaystyle 2\leq i\leq n$, 得
$$\begin{aligned} D_n=\left(a_0-\sum_{i=1}^{n-1} \frac{x^2}{a_i}\right)a_1\cdots a_{n-1}. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/
966、 2、 设
$$\begin{aligned} g(y)=\left|\begin{array}{cccccccccc}y&0&0&0&\cdots&0&1\\\\ y^2&2&0&0&\cdots&0&1\\\\ y^3&3&3&0&\cdots&0&1\\\\ \vdots&\vdots&\vdots&\vdots&&\vdots&\vdots\\\\ y^n&n&C_n^2&C_n^3&\cdots&C_n^{n-1}&1\\\\ y^{n+1}&n+1&C_{n+1}^2&C_{n+1}^3&\cdots&C_{n+1}^{n-1}&1\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
求 $\displaystyle g(y+1)-g(y)$. (南昌大学2023年高等代数考研试题) [行列式 ]
纸质资料/答疑/pdf1/pdf2 /
$$\begin{aligned} \mbox{原式}= \left|\begin{array}{cccccccccc}1&0&0&0&\cdots&0&1\\\\ 2y+1&2&0&0&\cdots&0&1\\\\ 3y^2+3y+1&3&3&0&\cdots&0&1\\\\ \vdots&\vdots&\vdots&\vdots&&\vdots&\vdots\\\\ ny^{n-1}+\cdots+ny+1&n&C_n^2&C_n^3&\cdots&C_n^{n-1}&1\\\\ (n+1)y^n+\cdots+(n+1)y+1&n+1&C_{n+1}^2&C_{n+1}^3&\cdots&C_{n+1}^{n-1}&1\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
第 $\displaystyle 2$ 列 $\displaystyle \cdot(-y)$, 第 $\displaystyle 3$ 列 $\displaystyle \cdot(-y^2)$, $\displaystyle \cdots$, 第 $\displaystyle n$ 列 $\displaystyle \cdot(-y^{n-1})$, 第 $\displaystyle n$ 列 $\displaystyle \cdot(-1)$ 加到第 $\displaystyle 1$ 列得
$$\begin{aligned} \mbox{原式}= \left|\begin{array}{cccccccccc}0&0&0&0&\cdots&0&1\\\\ 0&2&0&0&\cdots&0&1\\\\ 0&3&3&0&\cdots&0&1\\\\ \vdots&\vdots&\vdots&\vdots&&\vdots&\vdots\\\\ 0&n&C_n^2&C_n^3&\cdots&C_n^{n-1}&1\\\\ (n+1)y^n&n+1&C_{n+1}^2&C_{n+1}^3&\cdots&C_{n+1}^{n-1}&1\end{array}\right|. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
按第 $\displaystyle 1$ 列展开后, 再按第 1 行展开知
$$\begin{aligned} \mbox{原式}=(-1)^{(n+1)+1}(n+1)y^n\cdot (-1)^{1+n}1\cdot 2\cdot 3\cdots n =-(n+1)!y^n. \tiny\boxed{\begin{array}{c}\mbox{跟锦数学微信公众号}\\\\\mbox{zhangzujin.cn}\end{array}}\end{aligned}$$
跟锦数学微信公众号. 在线资料/公众号/